Posts Tagged ‘ c-bot

Building the C-Bot 3D printer: Part 28 : Lighting, Ringing, Breaking

Jump to C-Bot blog index to see all the posts.


This update is a combo post on several subjects at once:

Adding Lighting

Up until now, the C-Bot has been a dark printer:  No internal lighting whatsoever.  My Replicator1 is like a little supernova next to it when the room is dark.  But no longer:  Over the weekend I added both an 12v LED strip to the top-front X-beam (pointing directly at the print-bed) and a superbright LED directly on the print-head itself:

While my buddy Mason did a slick job of wiring his LED strip directly into the Rumba board on his C-Bot, so he can adjust the lighting based on the print settings, I did not:  I ran a extra 12v lead out of my power-supply, and connected both the LED Strip, and the superbright LED (with inline resistor) directly to it:  Turn C-Bot on, lights turn on.  Nuff’said / good enough.

Breaking

After I installed the lighting and turned the bot back on, the Bowden extruder suddenly started jittering:  It would no longer extrude filament.

I started by swapping a DRV8825 stepper driver from the z-steppers to the extruder stepper slot:  Try extruding, and it works.  Ok, it must be a bad DRV8825, and I have no spares.  But I do have a bunch of extra A4988‘s:  I’ll just put one in there, and updated my firmware to use it instead.  It doesn’t work:  Jittering starts again.  So I revert the firmware change, and put a ‘good’ DRV8825 back in:  Jittering.  What is going on?

Soon, any DRV8825 I put in that slot causes jittering, but they all work when plugged back into their original slot.  Drivers are good,… is my board bad?  At this point I disconnect the 4-prong JST connector running from the board to the stepper, and notice that one side is slightly melted: I remove the wires from the connector, and connect them on-by-one to the pins on the board:  Everything starts working again.

Canibalizing a connector from some other wires, I reinsert the leads, plug it into the board, and back in action.

Seriously?!?

Improving Ringing / Ghosting

I had recently printed out a “Sledgehammer Games Recognition Coin Holder” for someone at work (I modeled it in Maya / Tinkercad):  We can give out cool coins to fellow employees for doing good work, and I designed this coin holder so people can show them off (there’s four slots in the top to hold the coins).

I’d printed many on my Replicator 1 in the past, and printed this one on the C-Bot for the first time.  And what I noticed was, there was a terrible amount of ghosting / ringing happening:

shg_recognition

Click to see the full-size that really shows the problem off.

This was printed with the .6mm E3D-Volcano nozzle, 300 micron layer heights at 60mm/sec, in MakerGeeks Royal Purple PLA.

The issue was, the prints done on my Replicator 1 had less ringing than the C-Bot, and this didn’t make sense to me:  The C-Bot has a Bowden extruder, thus removing a bunch of moving mass from the toolhead, not to mention it uses Core-XY mechanics, that is supposed to help out as well.  Why are things worse?

Posting this question to the 3D Printing Google Group, I got a bunch of good answers.  Specifically, my firmware acceleration may be too high, and the size of the printer itself could be causing too much shake, do to the lack of additional cross-members for stability.  Right now I have no surplus extrusions to stiffen it up, and my ultimate goal is to bolt the printer directly to the wall, thus really locking down any shaking.  But in the meantime, I can adjust the acceleration in the firmware.

I made a ringing/ghosting test model in Maya that would show off the issue on X, Y, and XY all at the same time.  I printed it with my default settings (3000 mm/sec), then dropped it waaay down to 800 mm/sec.  The results were pretty obvious:

ringing_comparison

Click for bigger pic

On the left of each image, is the ‘800 mm/sec acceleration’ print, and on the right is the ‘3000 mm/sec acceleration’ print.  These changes were made in Marlin’s Configuration.h:

#define DEFAULT_ACCELERATION 800
#define DEFAULT_RETRACT_ACCELERATION 800
#define DEFAULT_TRAVEL_ACCELERATION 800

I just set everything that looked applicable to 800.

So, an noticeable improvement.  But once I get the printer “bolted down”, I hope to be able to print even faster, with better results.


Jump to C-Bot blog index to see all the posts.

3D Printing McMaster-Carr Files

I, like many others, love McMaster-Carr.  I purchased a number of items from them during my C-Bot build:  Their shipping & customer service is always great.

While I always saw the icon, it never clicked, and it wasn’t until I was listening to a 3D Printing Today podcast (Episode 100, specifically) that I connected the dots:  You can 3D print the stuff they sell, since they have CAD files for so much of what they offer.  I was listening to the podcast at work, so when I got home I decided to try it for myself.  So easy.  On a side-note I’m not too concerned they’re going to loose much business over this:  Not sure what practical use most people will have for a 3d-printed plastic bolt…

First (if you don’t have software that can import STEP files and export STL’s), install Freecad.  I did this all on my Mac, but they have Windows & Linux options as well.

Second, go find something in McMaster-Carr to print.  Like this super-chunky Metric screw for example.  When you’re browsing their offerings, you’ll know you can get the CAD file if there’s a little green “CAD crosshair” icon, and you then click on the “Product Details” next to it:

mcmaster-carr printable

In that window there’ll be a “Save” button, and next to it a drop-down for file formats:  Choose ‘3-D STEP’, and hit the button:

mcmaster-carr download

Next, in Freecad, ‘File -> Open’ and browse to the STEP file you just downloaded.  You’ll see something like this:

freecad

Under ‘Labels & Attributes’ on the left, select the object (probably a bunch of random letters and numbers).   Then access ‘File -> Export’ and change ‘Files of type’ to Mesh formats.  Make sure the name ends in .stl, and export it.

Finally open the stl in your slicer of choice (in my case, Simplify3D), and get it ready for print:

s3d

1 hr 15 min later:

bolt

A double-sized version is printed via the C-Bot:

  • .6mm E3D-v6 Volcano nozzle.
  • 300 micron layer height printed @ 60mm/sec.
  • MakerGeeks “Royal Purple” PLA printed @ 220 deg.

Never realized it was that simple!

PS: If you’re not listening to the ‘3D-Printing Today’ podcast, you really should be.  A lot of great info in there every time.

New 3D Print: Giant ‘P’

Most of my ‘big’ prints on the C-Bot have involved vases:  Large flat bases, thin walls, print fast.  I wanted to try something more ‘structural’:  Dense & flat & strong, but still take up most of the build volume.

So I printed a giant P: (you know, for ‘P’avey)

  • 500 micron layer height, 1 shell, 2 floor, 2 roof, 20% infill.
  • 1mm E3dD-v6 Volcano nozzle printing @ 30mm/sec.
  • Fans on at layer 3, 25%.
  • 210 deg blue GizmoDorks PLA on glass plate covered in wood glue slurry.
  • Modeled in Maya, sliced in Simplify 3D.
  • Just over 4 hours to print.

Came out really well actually, only thing that could be better is the top surface quality:  I either need one more roof layer (currently 2), or I’d need to up the infill to a higher percentage so the bridging wasn’t so far.  And it stuck really well to the wood-glue slurry on the glass build plate.

3DBenchy vs the Volcano

Since I’ve been doing so much calibration on my C-Bot’s 1mm E3D-V6 Volcano nozzle, I thought I’d try something more challenging than dodecahedrons:  3DBenchy seems like a good test.  Over on this Google Group Thread, the user Adam Paul had posted his volcano 3dBenchy results, so I figured it’d be good to compare against.  Our prints came out amazingly similar in my opinion.  I do like the happy accident that makes it look like smoke is coming out of the stack.

  • Gizmodorks Blue PLA
  • 500 Micron layer height, 210 deg, 30mm/sec
  • 1mm volcano nozzle
  • About 18 minutes

The bottom of the boat actually turned out pretty well, despite the zits that still form during segment start.  But once it gets to the wheelhouse, even with my new dual fans cranked, it still just gets too hot, the plastic turns to goo, and chaos ensues.

So as a sanity check I printed a ‘big’ benchy, 2.5x as large (since I’m using a nozzle 2.5x as big as normal).  It turned out way better.  Still have the zit issue though.  It printed in just over three hours.

C-Bot 3D Printer: Upgrading the cooling fans

Jump to C-Bot blog index to see all the posts.


Back on part 23 I added dual 12v 40x10mm cooling fans to the C-Bot: I’m guessing each was around 4cmf, for a total of 8cfm.  About the same cfm as the single 24v 40mm fan on my Replicator 1.  Thing is, the 1mm E3D-v6 Volcano nozzle I’m using is 2.5x as wide, and printing layers 2.5x as thick as the .4mm Mk8 nozzle on my rep1:  So, a huge increase in volume being extruded, but same cooling.  The results was, negligible:  Turning the fans on\off seemed to have no effect on the prints.

So, after much research online, I found a 12v ‘High Speed Delta Cooling Fan‘ on ebay, 40x30mm rated at 24cfm : I bought a pair of those, modeled a modified fan bracket based on what Carl Feniak had made (download the stl’s from Thingiverse), and hooked them up:

keep_cool

Pros:

  • Huge amount of cooling, 48cmf combined.  If you point them towards the ground they act like hovercrafts.
  • Don’t need any ducting, so much power.

Cons:

  • Noise:  They sound like little turbines at full power.  Causes the stinkeye from the Mrs.
  • On a torture test, the pressure actually blew a tower off the build platform (it was only anchored by a few mm of footing though).

Other:

  • This could be a pro or a con based on how you look at it:  They cool so well, that the nozzle’s heater block couldn’t keep up:  Set at 210 degrees, it would steadily lower under 200 until I shut it down.  I had to use a spare strip of ceramic insulation tape (for a Replicator 2, fits great on the volcano though) to cover the heater block, then surround that with probably four layers of aluminum foil.  Now I can run the fans at 90% and not loose temp.

The Result:

  • They definitely cool the pla down quickly, compared to no cooling at all.  Currently my biggest hinderance is that I’m low on filament, and the spools I have left have absorbed moisture, causing popping sounds during print, so I can’t get an accurate read on final quality.
  • I can report though that bridging is much better:  I used to have to print three top layers to get a good finish, but I can drop that to two now.

Other things I’ve learned in the process:

  • Hairspray : No good as a binder between the PLA and glass build platform:  The volcano prints pop right off within a few layers.  A 50/50 mix of wood glue & water though, like I have been using, works great.  On my rep1 I can use hairspray ok though, I figured it would work here too.
  • Temp:  At 30mm/sec, I’ve been printing gray PLA at 210 deg successfully.  Tried lowering the temp to 200, but no dice:  The Bowden notched the filament.

Jump to C-Bot blog index to see all the posts.